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Observational constraints on the dark energy equation of state

For the time-varying equation of state w(a) = wo + (1 — a)w,,

Planck2015+BAO+SNe+HO Planck2018+BAO+SNe
0.0 | | | Planck+BSH i ? Planck TT,TE,EE+ lowE+ lensing
Planck+ WL+ BAO/ RSD
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The deviation from w = —1 (especially the region w < —1)

is allowed from the data.
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Theoretical models of cosmic acceleration

(by Rocky Kolb)

® Cosmo-illogical constant | w = —1

The vacuum energy can work as a cosmological constant, but
it 1s difficult to explain the tiny observed dark energy scale.

® Dynamical dark energy models

w evolves in time.

Additional ingredients to those appearing in standard model
of particle physics and General Relativity are taken into account.

They can be

‘ They may be directly coupled or uncoupled to gravity.
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Scalar-tensor theories

For a scalar field coupled to gravity, Horndeski theories are known
as the most general theories with second-order equations of motion.

ﬂ Avoiding instabilities of Hamiltonians unbounded from below.

Horndeski Lagrangian

L = Ga¢,X)+ Gs(¢, X)Op + Ga(¢, X)R — 2G4 x(¢, X) [(O¢)* — ¢ . 10|
+G5(¢a X)G}M/qb;l“/ + %G&X(qba X) [(qu)?, — B(Dé)qb;#b’gb;uy + 2¢;#V¢;#U¢;V;a]

Scalar field ¢ with a kinetic energy X = —0"¢0,,¢/2.
G2, G3, G4, G5 are arbitrary functions of ¢ and X.

R: Ricci scalar, G,,: Einstein tensor

Horndeski derived this Lagrangian at the age of 25 when he was the student
of David Lovelock and it was rediscovered in 2011.




Times cited

Second-order scalar-tensor field equations in a
four-dimensional space

Gregory Walter Horndeski (Watedoo U.)
1974 - 21 pagas

Int.J. Theor.Phys. 10 (1974) 363-384
DOI: 10.1007/BF01807638

In 1983, Horndeski (1948~) quitted physics and became an artist.
He started to write papers on physics over the last four years (2015~).

0. 1092 citations
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Gravitational wave speed constraints on dark energy

The GW 170817 event constrained the speed of gravitational waves to be very
close to that of light.

—3x107P < /e—1<Tx10716

Constraints on Horndeski theories

L = Ga(e, X) + Gs(e, X)Ob + Ga(, X)R — W}-&M}

_|" DY LS 3 0, : b pu, f ;,u.u ) o

i Demanding that Cy — C

L = Gy(¢,X) + Gs(¢, X)1o + G4(9)R

Quintessence, Cubic Brans-Dicke theory,
K-essence Galileons f(R) gravity

G4 = M2/2 in GR
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Current status of dark energy in scalar-tensor theories

® Quintessence and k-essence =) Minimally coupled to gravity

w > —1 See Kase and ST (1809.08735) for review.
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(a) Thawing models are consistent
with the data for w < —0.7 today|
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A to the region w = —1 occurs
= ] for 2 > 8.
() Tracking | (c) Tracker models are consistent
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Brans-Dicke (BD) theory (1961)

M2
Lagrangian: L = TPIF(@R +(1- 6Q2) F(9)X

where F(¢) = e 2Q6¢ /My

The constant () characterizes the coupling between the scalar field ¢ and
matter in the Einstein frame. It is related to the BD parameter wgp, as

Q2 — 1 GR is recovered for
2(3 + 2wgp) Wwp — 00 i.e., Q —0

The coupling () mediates fifth forces. The solar system experiment gives

wpp > 40000 ) Q[ <24x107°

For |Q] > 2.4 x 10>, we need some screening mechanism of fifth forces.
Two examples are

(1) Chameleon mechanism: Based on the scalar potential V' (¢)

e.g., f(R) gravity
e.g., Cubic Galileon XUl¢
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Strarobinsky (1980),

o o Capozziello (2003),
f(R) gravity (chameleon mechanism) carrolieta. coos),

Nojiri and Odintsov (2004),

The f(R) gravity is equivalent to BD theories with Q = —1/v/6
in the presence of a scalar potential:

_ of
= 2<0R f)

with the scalar degree of freedom (scalaron): ¢ = \[ My In g{%

As long as the form of f(R) is designed to have a large mass
in regions of high density, the chameleon mechanism is at work.

2n
Example: f{R} =R- ARy [RIRD} (Hu and Sawicki, 2007)

(R/Ro)*" + 1
In the high-density region (R > Ry), the scalaron mass squared grows as
M§ A2V x R2(ntD) s 2 — The field is very heavy, so the propagation

d¢2 of fifth forces is suppressed.
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More than 1000 papers,
f(R) dark energy see De Felice and ST (2010).
The models are constructed to recover the ACDM behavior in the past.

= (R/Ro)*" o
f(B) = R= Mo prpos—s ) f(R)=R— ARy for R> Ry

(Hu and Sawicki, 2007)

After R decreases to the order of Ry, the model deviates from the ACDM.
Deviation parameter from the ACDM::

B= TIRRA A ey [B<1.1x1073 today

H R
IR Lombriser et al (2012)

To avoid the large enhancement of perturbations
at the late cosmological epoch (Geg = 4G /3).

The variation of w at low redshifts i1s also limited:
w4+ 1| < O(0.01) ﬂ Indistinguishable from the ACDM

Battye et al (2018) in current observations.




'_
Galileons and their extensions

If there are no signatures of nonminimal couplings, the left-over Horndeski
Lagrangian is
M?

There are three possibilities (in the presence of cubic Lagrangian):

Ruled
out

M2
(A) Galileons without a potential: | L = X + ﬁX ¢ + TPIR =

There exists the self-accelerating solution with @ = constant.

(B) Galileons with a potential: _

Galileon has a linear potential V(¢) = m?3¢ driving cosmic acceleration.

M2
(C) Galileons with k-essence: | L = G2(X) + %X O¢ + T"IR

For example, the ghost condensate G3(X) = —X + ¢ X? leads to the
dark energy dynamics different from case (A).
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(A) Galileons without a potential

Lagrangian: [ = X + ﬁXD¢ + M—I?IR
M3 2
There 1s a tracker solution along which w = —2 in the matter era]  De Felice and
(finally approaching w = —1). ST (2010)

ﬂ Disfavored from the CMB+BAO+SNe data  Nesseris, De Felice, ST (2010)

The Galileon gives rise to the cosmic growth rate larger than that in GR.

2

Newtonian gravitational potential ¥: —¥ = —4xGudp.,
a —

) S . | 2
Weak lensing gravitational potential ¥eg: E_E Yot = 8TGE0pm

=2 > 1 for Galileons

The cosmic growth history of Galileons is in tension with the observational data

of redshift-space distortions, weak lensing, and ISW-galaxy cross-correlations.
Renk et al (2016)



Extended Galileons and ISW-galaxy cross-correlations

Bs . M, For n = O(1), &
L=X+_—r— N An— X U+ —— 9 —2R rapidly grows in time.
De Felice and ST (2011)

Correlations between the effect in CMB and galaxy distributions

é=) Correlations between ¢ and dp,,

Cross-correlation amplitude versus angle

The models with small n like n = 1 LoF

leads to the negative cross-correlation RN S B e
incompatible with the data. s |
-1.0 I

The ISW-galaxy data constrain

-20 b

the power 1in the range s |
n = O(100) E
= B
ﬂ Excluding cubic
Galileons (n=1) 057
0 [deg] 0 [deg] 0 [deg]
----- n=1 - =100 - = 5000
----- n =10 ----- n.= 1000 — ACDM

R. Kimura, T. Kobayashi and K. Yamamoto (2012)
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(B) Galileons with a potential

Provided the potential V(¢) of a light scalar dominates over the
Galilen term at late times, the model is observationally allowed.

Bound on today’s Galileon density parameter: Q. (tg) < 0.2

0§

For 53 > 1, the Galileon term can suppress
the field kinetic energy such that
A < Qg, < Qy = O(1) today.
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100 F

Even for A = M1V 4/V > 1, the dark energy
equation of state quickly approaches —1
after the dominance of Qy (with wpg > —1).

102 |

1074

This model predicts

1016

wpg > —1
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(C) Galileons with k-essence g, ana st 2018

M2
L =X+ 02X2 uE ]553 (o + —— 5 R Ghost condensate + Galileon
This term prevents the approach to tracker solutions (wpg = —2).

Moreover, the growth perturbations can be close to that in GR (u =X =1).
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This model enters the region WpE < —1
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Observational constraints on Model (C)

Peirone, Benevento, Frusicante, ST, in preparation

(CMB+BAO+SN [a+RSD)

The model entering the region wpg < —1 exhibits the better fit to
the data relative to the ACDM model.

—— Best fit bH

Future

10> 1074 1073 1072 1071 109

a
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Short summary of scalar-tensor dark energy

The GW 170817 event constrained the Hordenski Lagrangin to be
L =G2(¢9,X)+Gs3(9, X)Uo + Ga(9)R

e So far, there were no observational signatures for nonminimally coupled
theories (including f(R) gravity).

e The cubic Galileon with the late-time dominance as dark energy is
ruled out from observations.

e The cubic Galileon with a potential or with k-essence should leave
observational signatures consistent with current observations.

v

If these models are ruled out from future observations, the allowed dark energy
theories reduce to quintessence, k-essence, or the cosmological constant.
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Part 11

Dark energy in vector-tensor theories



Vector fields can derive cosmic acceleration?

Massless and massive vector fields A, in Minkowski space-time

(1) Maxwell field (massless)

: 1
Lagrangian: £r = — 5 Fu F where  Fl. = 0,4, — 9,4,

There are two transverse polarizations (electric and magnetic fields).

(11) Proca field (massive)

. 1 1 .

Lagranglan: Lr= _Z MVF’W/ — §m2AMAr“ " The Electric and Magnetic Fields

Introduction of the mass m of the vector field A, allows

the propagation in the longitudinal direction due to the
breaking of U(1) gauge invariance.

2 transverse and 1 longitudinal . __
= 3 DOFs Longitudinal

propagation
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Vector-tensor theories

On general curved backgrounds, it 1s possible to extend the massive Proca
theories to those containing three DOFs and two tensor polarizations.

Heisenberg (2014), Tasinato (2014)

L: =Gz(X,FY), Intrinsic vector mode in F' and Y
L3 = Ga(X)V,. A",
L4= Gq{;{jﬂ + Gd,X{X} [E?u‘qﬂ]z — ?p-‘d‘ﬂ'?aﬁp] 1

L

Ls = Gs(X)Gu VFA” — =G5, x(X)[(V.A*)? — 3V, APV, A, V° AP + 2V, A, VAPV A,

6
—g5(X)FHFB,V Ag, Intrinsic vector
1 . -
Lo = Go(X)LP**PV A,V . Ap + ﬁcﬁ,x(.::)FﬂvanA#vﬂA,, mode

1
where X = —§AMA“, F= _ipﬂppﬁl*q Y=A"A"F,"F..

i 1 — 1
Lp#-’.a'n.l" - Eruppﬂt.l:l.ﬂ-rniﬂw i 4 Fee E{”mdﬂlﬂ'

Taking the scalar limit A* — V#r, the above Lagrangian recovers
a sub-class of Horndeski theories (with Lg vanishing).

In 1976, Horndeski derived the U(1)-invariant interaction: Gg(X) = constant.



'_
U(1) gauge-invariant interaction: constant G _

Conservation of Charge and the Einstein-Maxwell
Field Equations

G.W. Horndeski (waterloo U.)
1976 - B pages

J.Math.Phys. 17 (1976) 1980-1987
DOI: 10.1063/1.522837

5 105 citations

Times cited
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995
2000
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2015
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After the GW170187 event : ¢t — C

L2 =Gs(X,FY),
L3 =0Ga(X)V . A",

L4 = Ga(X) R + G-yl Ny VL] |

1 .
Ls = Entem A G A 3V AL W VA 2N VALY Ly
—g5(X)Fo"FB,V 4 Ag, Intrinsic
Lo = Go(X)L**PV, A,V . Ag + %gﬁ.x{ X)FoP Frg A,V A, | vector modes

e G4(X) needs to be constant.

e Intrinsic vector modes (including F,Y dependence in Gs)
survive.
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A simple dark energy model in vector-tensor theories

M2
F + Ga(X) + G3(X)V, A" + T‘”R

S = /d4:c\/—g + Sum

where

G2(X) = b XP2,  G3(X) = b3 X3

On the FLRW background, the temporal and spatial components of A" are
; 1 e
A° = @(t)+dp, A = =07 Oixv + Ej)

Background

Perturbations
value
The background temporal component (auxiliary field) obeys
¢P H = const. where p=1—2py + 2p3

‘ For p > 0, ¢ grows with the decrease of H and it approaches
the de Sitter attractor (constant H).

De Felice, Heisenberg, Kase, Mukohyama, ST, Zhang (2016)




Dark energy equation of state (background evolution)

3(1+5) +5Q, (a) wpg = —1 — 43./3 in the radiation era,
WDE = — g . mmmmy (b) wpg = —1 — s in the matter era,
(1+ sQprw) (c) wpeg = —1 in the de Sitter era
s = pa/p characterizes the deviation
from wpg = —1. 080 e
() =1
The joint analysis based on 10 | s
SNIa, CMB, BAO, HO data _
-1.2 D T
place the bound | Smaller o
s = 025470085 ©os%cy)
. 2
De Felice, Heisenberg, ST (2017) > S R
s = 0 is outside the 95% CL border. 18 :
The phantom behavior of wpg 0 | ]
reduces the tension of Hy between 22 | ]
high and low redshift measurements [ :
. 24 R T R R B BN R
that exists for the ACDM (s = 0). 01 1 10 100 100 10* 105  10°

1+7z2
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Cosmological perturbations
The spatial vector component A* contains scalar and vector perturbations.
. - '
Al = =6 @5xv + E)
T~
Longitudinal scalar perturbations Intrinsic vector perturbations

Both xy and E; affect the evolution of gravitational potentials ¥, ®
and the matter density perturbation 6p,, through

- k2
Newtonian potential: ?‘I’ = —dm Gﬁ5,0m
Weak lensing potential Yo = ® — W ﬁ_g‘ﬂf’uff — 871G Eépm

The matter density contrast dm obeys | § 4+ 2Hb,, — AT UG PO == 0

The deviations of p and > from 1 lead to the modified evolution|
of W, Yest, 0,, compared to GR.
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Cosmic growth rate in vector-tensor theories

On the de Sitter attractor, the two dimensionless gravitational couplings reduce to

1
i 5 \1/(1+8) 4
— Er = ] e
Hds 13 + [ DS * (3‘31&) Av

where Ay is associated with the intrinsic vector mode such that

o \P 12/
we | (S2) 2 .
v [(Mpl) ] av qv = 1 in our model

m
(coefficient of kinetic term
of vector perturbations)

Ls [nthelimit \, — 0, {dS = 2as — 1
The evolution of perturbation is similar to that in GR.

ﬂ Compatible with growth-rate measurements

s nthe limit \y — oo, Jlds = Xas > 1
This case reduces to a subclass of scalar-tensor theories.

ﬂ Difficult to be compatible with growth-rate measurements



ISW-galaxy cross-correlations

or smaller Ay, the model shows a better compatibility with the data.
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The existence of intrinsic vector mode in generalized Proca theories can give
rise to positive cross-correlations compatible with the data.
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Observational constraints on generalized Proca theoires
Nakamura, De Felice, Kase, ST (2018)

We use the data of CMB, BAO, SN Ia, HO, redshift space distortions,
and the ISW-galaxy cross-correlations with the catalogues of 2MASS
and SDSS.
_ +0.006
< h — (0.69710-006 Deviation from

—0.006
ACDM model
. 40.100 —

i 4.317 P o H1
p= 3'078J—r2.1197 «— ¢
v < Ay < 0.015 , «—— The ISW-galaxy
(95% CL) data gives this
) upper bound.

The model with s > 0 still fits
the data better than the ACDM model.

Q.m0 h S p logo Av BCSt-ﬁtZ X?nln — 6189
ACDM: Xiin = 642.7
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Best-fit model

Qo = 0.301, h = 0.697, s = 0.185, p = 3.078, log;y Ay = —7.359 = x° =618.9.

The background dynamics in our model is different from that in the ACDM
model, while the perturbation dynamics is similar to that in ACDM.

3(1+4s) + s, S 20+1 _q

— w(0) =T, C:~P;i(cos b
TP (0) = Tewn } =1 = CIPiteost)
10 pr——r——+—+————
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-0_9 —— —— O O —— —— O bl
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X 02
0.0 f
0.2 F
0.4 F

S  06F
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Akaike-information-criterion (AIC): AIC = x2. +2 x 5 = 628.9
Smaller than AICAcpMm = x;‘;in’ACDM + 2 X 2 =646.7



Summary

- The GW170817 event placed tight constraints on dark energy models
in scalar-tensor and vector-tensor theories.

* Unless the potential or k-essence terms are taken into account,
the scalar cubic Galileon 1s excluded from the data (especially from
the negative ISW-galaxy cross-correlations).

- For the vector cubic Galileon, the ISW-galaxy cross-correlation can be
positive due to the existence of intrinsic vector modes.

- In vector-tensor theories, the model with s > (0 fits the data better than
the LCDM model by reducing the tension of HO between high- and
low-redshift measurements.

Let’s see whether or not future observations may find some signatures
for the deviation from the LCDM model.



